Models of RNA virus evolution and their roles in vaccine design
نویسندگان
چکیده
Viruses are fast evolving pathogens that continuously adapt to the highly variable environments they live and reproduce in. Strategies devoted to inhibit virus replication and to control their spread among hosts need to cope with these extremely heterogeneous populations and with their potential to avoid medical interventions. Computational techniques such as phylogenetic methods have broadened our picture of viral evolution both in time and space, and mathematical modeling has contributed substantially to our progress in unraveling the dynamics of virus replication, fitness, and virulence. Integration of multiple computational and mathematical approaches with experimental data can help to predict the behavior of viral pathogens and to anticipate their escape dynamics. This piece of information plays a critical role in some aspects of vaccine development, such as viral strain selection for vaccinations or rational attenuation of viruses. Here we review several aspects of viral evolution that can be addressed quantitatively, and we discuss computational methods that have the potential to improve vaccine design.
منابع مشابه
Pneumoviruses: Molecular Genetics and Reverse Genetics
Pneumoviruses are responsible for significant respiratory disease in their hosts and represent a major problemfor human and animal health. Pneumoviruses are members of the family Paramyxoviridae, subfamilyPneumovirinae and the virus particles consist of a negative-sense, nonsegmented RNA genome within a helical nucleocapsid structure enveloped in a lipid membrane derived from the ho...
متن کاملConstruction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملCloning & Expression of F Protein Gene (HR1 region) of Newcastle Disease Virus NR43 Isolate from Iran in E.coli
Background and Aims: NDV (Newcastle Disease Virus) is one of the viruses that cause disease in avian with severe economic losses in the poultry industry in many countries. Fusion protein (F) which plays a major role in the virus pathogenicity contains several regions that have a role in the fusion process. Mutation in the sequence of HR1 & HR2 regions of this protein prevents fusion of the viru...
متن کاملFirst molecular detection of Chronic Bee Paralysis Virus (CBPV) in Iran
Among the viruses infecting honey bees, chronic bee paralysis virus (CBPV) is known to induce significant losses in honey bee colonies. CBPV is an unclassified polymorphic single stranded RNA virus. Using RT-PCR, the virus infections in honey bees can be detected in a rapid and accurate manner. Bee samples were collected from 23 provinces of Iran, between July-September 2011 and 2012. A tota...
متن کاملMolecular detection of Acute Bee Paralysis Virus in Iran
Acute bee paralysis virus (ABPV) is a small single stranded RNA virus recently classified within the family Dicistroviridae, genus Cripavirus. Here, we describe the first study of ABPV in unhealthy bee colonies, which has been an unusual loss in adult bee population and significant honey bee mortality during the year. The aim of this study was evaluation of ABPV infection in honey bee colonies ...
متن کامل